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3 Gradient Descent Method

e p=—Vf(x) Steepest descent direction.

If we take the direction that takes the steepest descent of f in the immediate neighborhood
of x until we stop going descent directions, we are guaranteed to reach a local minima.

If we apply steepest descent to a quadratic function, then after many steps the algorithm
takes alternate steps approximating two directions: those corresponding to the eigenvectors
of the smallest and the largest eigenvalues of the Hessian matrix. The convergence rate can
be shown to be linear:
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where k is the ratio of the largest to the smallest eigenvalue of Hessian matrix H. Consid-
ering f(x*) — f(x*) as how accurate the solution is at iterate k. At each iteration, this is
multiplied by a number less than 1. Therefore it will eventually go to 0. In general, if steep-
est descent is applied for strictly convex functions using a good line search, the convergence
is linear.
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Example: Implement gradient descent method with backtracking linesearch, where ¢ =
0.1,p= % Test it on the function

e f(x) = (2? + 1023), starting x = (50, 50).

o f(x)=em 32701 4 gm=3w2=0.1 4 omm=0.1 garting x = (2.0, 1.0).
Conclusion: Advantages of gradient descent:

e Simple. No need to compute second-derivative (Hessian matrix). Computationally fast
per iteration.

e Low storage: no matrices.
Disadvantages of gradient descent:

e Can be very, very slow.

e The direction is not well-scaled. Therefore the number of iterations largely depends
on the scale of the problem.

1

Example: Test gradient descent method with backtracking linesearch, where ¢ = 0.1,p = 3

and ap = 1 at each iteration. Test it on the function
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o f(x)=10(emrT3v2701 4 er1=322-01 4 o=@1=0.1) "sparting x = (2.0, 1.0).

How do we set the initial step-length?

Since gradient descent methods do not produce well-scaled search directions, it is important
to use current information of the problem and the algorithm to make the initial guess.

e A popular strategy is to assume that the first-order change in the function at x*) will
be the same as that obtained at the previous step. In other words, we choose aq so
that aep®TV f(x®)) = oF=Dpk-Ty f(x*=1) 5o we have

-1y PETITV f(x D)

T PRIV (x®)

e Another useful strategy is to interpolate a quadratic to the data f(x®*~1), f(x*)) and
#'(0) = p*= DTV f(x*~1) and to define oy to be its minimizer:

2(f(xW) — fF(x*"1))
¢'(0)

Qg =

Example: Test gradient descent method with backtracking linesearch, where ¢ = 0.1, p = %
k—1) pF VTV f(x(E—1)

= al

starting the 2nd iteration. Test it on the function

o f(x)=10(emr 372701 4 gr1=322=0.1 4 o=e1=0.1) "gtarting x = (2.0, 1.0).

* Further Reading - Conjugate Gradient Method.
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Figure 3.1: Example of Gradient descent method performances.
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Figure 3.2: Example of Gradient descent method on 10-times scaled exponential function (example
function 2).



