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3 Gradient Descent Method

• p = −∇f(x) Steepest descent direction.

If we take the direction that takes the steepest descent of f in the immediate neighborhood
of x until we stop going descent directions, we are guaranteed to reach a local minima.

If we apply steepest descent to a quadratic function, then after many steps the algorithm
takes alternate steps approximating two directions: those corresponding to the eigenvectors
of the smallest and the largest eigenvalues of the Hessian matrix. The convergence rate can
be shown to be linear:

f(xk+1)− f(x∗) ≤ (
κ− 1

κ+ 1
)2(f(xk)− f(x∗))

where κ is the ratio of the largest to the smallest eigenvalue of Hessian matrix H. Consid-
ering f(xk) − f(x∗) as how accurate the solution is at iterate k. At each iteration, this is
multiplied by a number less than 1. Therefore it will eventually go to 0. In general, if steep-
est descent is applied for strictly convex functions using a good line search, the convergence
is linear.

Example: Implement gradient descent method with backtracking linesearch, where c =
0.1, ρ = 1

2 . Test it on the function

• f(x) = (x2
1 + 10x2

2), starting x = (50, 50).

• f(x) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1, starting x = (2.0, 1.0).

Conclusion: Advantages of gradient descent:

• Simple. No need to compute second-derivative (Hessian matrix). Computationally fast
per iteration.

• Low storage: no matrices.

Disadvantages of gradient descent:

• Can be very, very slow.

• The direction is not well-scaled. Therefore the number of iterations largely depends
on the scale of the problem.

Example: Test gradient descent method with backtracking linesearch, where c = 0.1, ρ = 1
2

and α0 = 1 at each iteration. Test it on the function
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• f(x) = 10(ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1), starting x = (2.0, 1.0).

How do we set the initial step-length?

Since gradient descent methods do not produce well-scaled search directions, it is important
to use current information of the problem and the algorithm to make the initial guess.

• A popular strategy is to assume that the first-order change in the function at x(k) will
be the same as that obtained at the previous step. In other words, we choose α0 so
that α0p

(k)T∇f(x(k)) = α(k−1)
p
(k−1)T∇f(x(k−1)), so we have

α0 = α(k−1)p
(k−1)T∇f(x(k−1))

p(k)T∇f(x(k))

• Another useful strategy is to interpolate a quadratic to the data f(x(k−1)), f(x(k)) and
φ�(0) = p

(k−1)T∇f(x(k−1)) and to define α0 to be its minimizer:

α0 =
2(f(x(k))− f(x(k−1)))

φ�(0)

Example: Test gradient descent method with backtracking linesearch, where c = 0.1, ρ = 1
2

and α0 = α(k−1) p(k−1)T∇f(x(k−1))
p(k)T∇f(x(k))

starting the 2nd iteration. Test it on the function

• f(x) = 10(ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1), starting x = (2.0, 1.0).

∗ Further Reading - Conjugate Gradient Method.
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Gradient descent method on quadratic function

Gradient descent method on exponential function

Figure 3.1: Example of Gradient descent method performances.
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Gradient descent with line search initialized with α = 1 at each iteration

Gradient descent method with line search initialized with α0 = α(k−1) p(k−1)T∇f(x(k−1))
p(k)T∇f(x(k))

Figure 3.2: Example of Gradient descent method on 10-times scaled exponential function (example
function 2).


